版权说明 帮助中心
首页 > 成果 > 详情

Complete delay-decomposing approach to asymptotic stability for neural networks with time-varying delays.

SCI-EEIMedline
WOS被引频次:92
认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zeng, Hong-Bing;He, Yong;Wu, Min;Zhang, Chang-Fan
通讯作者:
Zeng, H.-B.
作者机构:
[Zhang, Chang-Fan; Zeng, Hong-Bing] School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412008, China
[Wu, Min; Zeng, Hong-Bing; He, Yong] School of Information Science and Engineering, Central South University, Changsha 410083, China
通讯机构:
[Zeng, Hong-Bing] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China.
语种:
英文
关键词:
Delay dependent stability criterion - Delay-dependent - Integral terms - Lyapunov-Krasovskii functionals - Numerical example - Time-varying delay - Upper Bound
期刊:
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council
ISSN:
1045-9227
年:
2011
卷:
22
期:
5
页码:
806-812
文献类别:
WOS:Article;EI:Journal article (JA)
所属学科:
ESI学科类别:工程学;WOS学科类别:Computer Science, Artificial Intelligence;Computer Science, Hardware & Architecture;Computer Science, Theory & Methods;Engineering, Electrical & Electronic
入藏号:
WOS:000290414400012;EI:20112013980418;PMID:21421436
基金类别:
National Natural Science Foundation of China [60974026]; Doctor Subject Foundation of China [200805330004]; National Science Fund for Distinguished Youth Scholars of Hunan Province [08JJ1010]
机构署名:
本校为其他机构
院系归属:
电气与信息工程学院
摘要:
This paper is concerned with the problem of stability of neural networks with time-varying delays. A novel LyapunovKrasovskii functional decomposing the delays in all integral terms is proposed. By exploiting all possible information and considering independent upper bounds of the delay derivative in various delay intervals, some new generalized delay-dependent stability criteria are established, which are different from the existing ones and improve upon previous results. Numerical examples are finally given to demonstrate the effectiveness and the merits of the proposed method. ©2011 IEEE.
参考文献:
Arik S, 2004, NEURAL NETWORKS, V17, P1027, DOI 10.1016/j.neunet.2004.02.001
Boyd S., 1994, LINEAR MATRIX INEQUA
Cao JD, 2005, IEEE T CIRCUITS-I, V52, P920
Chen TP, 2003, PHYS LETT A, V317, P436, DOI 10.1016/j.physleta.2003.08.066
Cheng CJ, 2006, IEEE T SYST MAN CY B, V36, P1191, DOI 10.1109/TSMCB.2006.874677

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com